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 Produced by resonant interaction of a relativistic electron 
beam with EM radiation in an undulator

electron 
beam

photon 
beam

e− beam dumpundulator

λr

 Radiation intensity ∝ N2

 Tunable, Powerful, Coherent radiation sources

Free Electron Lasers
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Self-Amplified Spontaneous Emission (SASE)
• Initiated by electron shot noise (spontaneous emission) and 

amplified over a narrow frequency bandwidth σω ~ ρωr

input power
effective start-up noise power ≈ undulator radiation over 2LG

• To determine the 3D effects including diffraction and finite beam 
size, one must solve the initial value problem in terms of a set 
of guided modes (first introduced by G. Moore)

K.-J. Kim, NIMA (1986), Wang & Yu, NIMA (1986)
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• The e-beam is described in terms of a distribution function 𝐹𝐹 =
𝐹𝐹 𝜃𝜃, 𝜂𝜂,𝒙𝒙,𝒑𝒑; 𝑧𝑧 in 6D-phase space. In view of the importance of 
stochastic effects such as shot noise, we use the Klimontovich 
distribution: 

• The interaction between the electron beam and the FEL radiation can 
be described in the framework of the Vlasov-Maxwell equations.

• The distribution function is governed by the Vlasov equation
𝑛𝑛𝑒𝑒: on-axis electron number density

Vlasov-Maxwell formalism

K.-J. Kim, PRL 57, 1871 (1986)
K.-J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and FELs (Cambridge Press, 2017)
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• After linearizing Vlasov Eq., we seek the self-similar, guided 
eigenmodes of the FEL. These are solutions of the form:   

Van Kampen’s normal mode expansion

• Substituting into the Vlasov-Maxwell (FEL) equations, we obtain two 
coupled relations for the growth rate and the mode amplitudes: 

• They are characterized by a constant growth rate 𝜇𝜇𝑙𝑙 and a z-
independent radiation/density mode profile  𝐴𝐴𝑙𝑙/𝐹𝐹𝑙𝑙 (Optical guiding)
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• Using Gaussian distributions, we obtain an explicit dispersion relation:

 �𝜎𝜎𝑥𝑥 is a quantitative measure of the diffraction effect

• There are four dimensionless parameters that affect the growth rate
(L.-H. Yu, Krinsky, Gluckstern, Phy. Rev. Lett. 64, 1990)

3D solution

• Ming Xie obtained a fitting formula that captures all these effects for 
FEL designs (1995)

 �𝜎𝜎𝑥𝑥 �𝑘𝑘𝛽𝛽 is a measure of the emittance effect
 �𝜎𝜎𝜂𝜂 represents the energy spread effect 

 Δ𝜈𝜈/(2𝜌𝜌) is scaled frequency detuning
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• Kwang-Je arrived at APS in 1998, I followed Kwang-Je to Chicago right after 
my Ph.D. from Stanford in May 1998.

• Our work was largely supported by an Argonne LDRD to do 
“Comprehensive Analysis of SASE”.

• In 1998-2002 we studied short-pulse effects, harmonic generation, 3D 
SASE start-up, FEL saturation, CSR microbunching instability...

• Together we published >20 journal publications and numerous conference 
papers, and went to some nice workshops too!

Kwang-Je at APS since 1998

Sardinia beach (Italy 2002)
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First SASE saturation (2001) !
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Nonlinear Harmonic Radiation at VISA*

Associated gain lengths

 

L2 = 9.8cm

 

L3 = 6.0cm

 

Ln = Lg / n
Lf = 19cm

Fundamental

2nd harmonic

3rd  harmonic

 

⇒

Mode 
(n)

Wavelength 
(nm)

Energy 
(µJ)

% of 
E1

1 845 52

2 421 .93 1.8

3 280 .40 .77

Energy Comparison

April 20, 2001

Nonlinear Harmonic 
Energy vs. Distance

* A. Tremaine, XJ Wang et al., PRL (2002)

Using the relation of 2nd and 3rd harmonic 
energies as given by Z. Huang and K.J.Kim
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b -bunching parameters
Kn -Coupling coefficients



Onto LCLS

• It was realized that undulator wakefield-induced energy loss 
is an important effect for the LCLS (5 mm gap for >100 m)

no wake with wake

• Tapered undulator keeps FEL resonance and increase 
power.

• But, undulator wakefield makes time-dependent energy 
loss and hence taper only works for the average loss.

• FEL resonance cannot be kept for every slice of the bunch.
• This led to FEL power degradation.

x-rayse-beam
• Compensate the average energy loss by tapering undulator

With XTCAV 
(Y. Ding)

• I left Chicago for the Sunny California in late 2002.



FEL with slowly varying beam and undulator parameters

 E-beam energy γc(z), undulator parameter K(z)

 Initial resonant wavelength

 Resonant energy

 Longitudinal motion is described by
(ponderomotive phase)

(normalized energy, change only due to FEL)

(E and φ are radiation field and phase)
11• Z. Huang, G. Stupakov, Phys. Rev. ST Accel. Beams 8, 040702 (2005)



Well-known technique in QM for slowly-varying potential

WKB approximation

 FEL is characterized by ρ: the relative gain bandwidth is a 
few ρ, and radiation field gain length ~ λu/(4πρ)

 Relative change in beam energy w.r.t resonant energy

 Apply WKB technique if the relative energy change per 
field gain length is smaller than ρ, i.e.,

We then extend the WKB analysis to 3D via Van 
Kampen’s method of mode expansion.

Normalized to ρ
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Comparison w/ simulations
 Radiation power dependence on δ is a gaussian

 GENESIS simulation of LCLS power vs. δ, 
 Power enhancement ~ 2 when energy gain 2ρ at saturation

 Power vs. δρ has RMS
FWHM 4σω (~4ρ at saturation)

2ρ

4ρ
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0.2-nC FEL Simulations with Taper

This study led to abandoning 1-nC LCLS

P. Emma’s talk at PAC05

No wake
Cu wake:  no taper
Cu wake:  200 kV/m
Cu wake:  300 kV/m

best taper: 
1012 photons

W. Fawley, 
S. Reiche



 KJK and I started the USPAS teaching in 2000, later joined force 
with Ryan. In total we have taught 8 USPAS sessions (+1 this 
coming summer).
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Teach FEL theory in USPAS

 The book is translated into Chinese in 2018.

 The lecture notes were steadily improved and became a textbook 
published by Cambridge Press in 2017.

(Kwang-Je Kim -> 金光齐 -> Coherent radiation)
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COHERENCE
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The law of Nature tells us to enjoy as we may.
Why spoil our joy by sheer vanity of life?

Poem by Fu Du (Tang dynasty, 758)
Calligraphy by T.-D. Lee (Nobel Laureate 1957) 
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